Bringing Modern Unit Testing Techniques to Sensornets

Author:

Iwanicki Konrad1,Horban Przemyslaw2,Glazar Piotr2,Strzelecki Karol2

Affiliation:

1. University of Warsaw, Warszawa, Poland

2. University of Warsaw

Abstract

Unit testing, an important facet of software quality assurance, is underappreciated by wireless sensor network (sensornet) developers. This is likely because our tools lag behind the rest of the computing field. As a remedy, we present a new framework that enables modern unit testing techniques in sensornets. Although the framework takes a holistic approach to unit testing, its novelty lies mainly in two aspects. First, to boost test development, it introduces embedded mock modules that automatically abstract out dependencies of tested code. Second, to automate test assessment, it provides embedded code coverage tools that identify untested control flow paths in the code. We demonstrate that in sensornets these features pose unique problems, solving which requires dedicated support from the compiler and operating system. However, the solutions have the potential to offer substantial benefits. In particular, they reduce the unit test development effort by a few factors compared to existing solutions. At the same time, they facilitate obtaining full code coverage, compared to merely 57--72% that can be achieved with integration tests. They also allow for intercepting and reporting many classes of runtime failures, thereby simplifying the diagnosis of software flaws. Finally, they enable fine-grained management of the quality of sensornet software.

Funder

Regional Development Fund of the European Union within the Innovative Economy Operational Program

Foundation For Polish Science

Narodowe Centrum Nauki

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Intrusive Distributed Tracing of Wireless IoT Devices with the FlockLab 2 Testbed;ACM Transactions on Internet of Things;2022-02-28

2. Modeling and proving dynamic behaviors of a routing protocol: A tutorial;International Journal of Distributed Sensor Networks;2021-12

3. A Distributed Systems Perspective on Industrial IoT;2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS);2018-07

4. Software Adaptation in Wireless Sensor Networks;ACM Transactions on Autonomous and Adaptive Systems;2017-12-31

5. Efficient Automated Code Partitioning for Microcontrollers with Switchable Memory Banks;ACM Transactions on Embedded Computing Systems;2017-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3