Software Adaptation in Wireless Sensor Networks

Author:

Afanasov Mikhail1,Mottola Luca2ORCID,Ghezzi Carlo3

Affiliation:

1. Politecnico di Milano, Milano, Italy

2. Politecnico di Milano, Italy and SICS Swedish ICT, Milano, Italy

3. Politecnico di Milano, Italy

Abstract

We present design concepts, programming constructs, and automatic verification techniques to support the development of adaptive Wireless Sensor Network (WSN) software. WSNs operate at the interface between the physical world and the computing machine and are hence exposed to unpredictable environment dynamics. WSN software must adapt to these dynamics to maintain dependable and efficient operation. However, developers are left without proper support to develop adaptive functionality in WSN software. Our work fills this gap with three key contributions: (i) design concepts help developers organize the necessary adaptive functionality and understand their relations, (ii) dedicated programming constructs simplify the implementations, (iii) custom verification techniques allow developers to check the correctness of their design before deployment. We implement dedicated tool support to tie the three contributions, facilitating their practical application. Our evaluation considers representative WSN applications to analyze code metrics, synthetic simulations, and cycle-accurate emulation of popular WSN platforms. The results indicate that our work is effective in simplifying the development of adaptive WSN software; for example, implementations are provably easier to test and to maintain, the run-time overhead of our dedicated programming constructs is negligible, and our verification techniques return results in a matter of seconds.

Funder

“Smart Living Technologies”

“Zero-energy Buildings in Smart Urban Districts”

Italian Ministry for University and Research

“ICT Solutions to Support Logistics and Transport Processes”

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3