Efficient Automated Code Partitioning for Microcontrollers with Switchable Memory Banks

Author:

Ciszewski Michal1,Iwanicki Konrad1ORCID

Affiliation:

1. University of Warsaw, Warszawa, Poland

Abstract

Switching active memory banks at runtime allows a processor with a narrow address bus to access memory that exceeds ranges normally addressable via the bus. Switching code memory banks is regaining interest in microcontrollers for the Internet of Things (IoT), which have to run continuously growing software, while at the same time consuming ultra-small amounts of energy. To make use of bank switching, such software must be partitioned among the available banks and augmented with bank-switching instructions. In contrast to the augmenting, which is done automatically by a compiler, today the partitioning is normally done manually by programmers. However, since IoT software is cross-compiled on much more powerful machines than its target microcontrollers, it becomes possible to partition it automatically during compilation. In this article, we thus study the problem of partitioning program code among banks such that the resulting runtime performance of the program is maximized. We prove that the problem is NP -hard and propose a heuristic algorithm with a low complexity, so it enables fast compilation and hence interactive software development. The algorithm decomposes the problem into three subproblems and introduces a heuristic for each of them: (1) which pieces of code to partition, (2) which of them to assign to permanently mapped banks, and (3) how to divide the remaining ones among switchable banks. We integrate the algorithm, together with earlier ones, in an open-source compiler and test the resulting solution on synthetic as well as actual commercial IoT software bases, thereby demonstrating its advantages and drawbacks. In particular, the results show that the performance of partitions produced by our algorithm comes close to that of partitions created manually by programmers with expert knowledge on the partitioned code.

Funder

Polish Ministry of Science and Higher Education with a scholarship for outstanding young scientists

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Case for Dynamic Parallelisation using Learning Techniques;INT CONF COMM SYST;2020

2. A Distributed Systems Perspective on Industrial IoT;2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS);2018-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3