A case for exploiting subarray-level parallelism (SALP) in DRAM

Author:

Kim Yoongu1,Seshadri Vivek1,Lee Donghyuk1,Liu Jamie1,Mutlu Onur1

Affiliation:

1. Carnegie Mellon University

Abstract

Modern DRAMs have multiple banks to serve multiple memory requests in parallel. However, when two requests go to the same bank, they have to be served serially, exacerbating the high latency of off-chip memory. Adding more banks to the system to mitigate this problem incurs high system cost. Our goal in this work is to achieve the benefits of increasing the number of banks with a low cost approach. To this end, we propose three new mechanisms that overlap the latencies of different requests that go to the same bank. The key observation exploited by our mechanisms is that a modern DRAM bank is implemented as a collection of subarrays that operate largely independently while sharing few global peripheral structures. Our proposed mechanisms (SALP-1, SALP-2, and MASA) mitigate the negative impact of bank serialization by overlapping different components of the bank access latencies of multiple requests that go to different subarrays within the same bank. SALP-1 requires no changes to the existing DRAM structure and only needs reinterpretation of some DRAM timing parameters. SALP-2 and MASA require only modest changes (< 0.15% area overhead) to the DRAM peripheral structures, which are much less design constrained than the DRAM core. Evaluations show that all our schemes significantly improve performance for both single-core systems and multi-core systems. Our schemes also interact positively with application-aware memory request scheduling in multi-core systems.

Publisher

Association for Computing Machinery (ACM)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HiFi-DRAM: Enabling High-fidelity DRAM Research by Uncovering Sense Amplifiers with IC Imaging;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

2. Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and Analysis;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

3. FASA-DRAM: Reducing DRAM Latency with Destructive Activation and Delayed Restoration;ACM Transactions on Architecture and Code Optimization;2024-05-21

4. AttAcc! Unleashing the Power of PIM for Batched Transformer-based Generative Model Inference;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2024-04-27

5. Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3