PreSET

Author:

Qureshi Moinuddin K.1,Franceschini Michele M.2,Jagmohan Ashish2,Lastras Luis A.2

Affiliation:

1. Georgia Institute of Technology

2. IBM T. J. Watson Research Center, NY

Abstract

Phase Change Memory (PCM) is a promising technology for building future main memory systems. A prominent characteristic of PCM is that it has write latency much higher than read latency. Servicing such slow writes causes significant contention for read requests. For our baseline PCM system, the slow writes increase the effective read latency by almost 2X, causing significant performance degradation.This paper alleviates the problem of slow writes by exploiting the fundamental property of PCM devices that writes are slow only in one direction (SET operation) and are almost as fast as reads in the other direction (RESET operation). Therefore, a write operation to a line in which all memory cells have been SET prior to the write, will incur much lower latency. We propose PreSET, an architectural technique that leverages this property to pro-actively SET all the bits in a given memory line well in advance of the anticipated write to that memory line. Our proposed design initiates a PreSET request for a memory line as soon as that line becomes dirty in the cache, thereby allowing a large window of time for the PreSET operation to complete. Our evaluations show that PreSET is more effective and incurs lower storage overhead than previously proposed write cancellation techniques. We also describe static and dynamic throttling schemes to limit the rate of PreSET operations. Our proposal reduces effective read latency from 982 cycles to 594 cycles and increases system performance by 34%, while improving the energy-delay-product by 25%.

Publisher

Association for Computing Machinery (ACM)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OML-PCM: optical multi-level phase change memory architecture for embedded computing systems;Engineering Research Express;2023-12-01

2. A survey on techniques for improving Phase Change Memory (PCM) lifetime;Journal of Systems Architecture;2023-11

3. DTC: A Drift-Tolerant Coding to Improve the Performance and Energy Efficiency of -Level-Cell Phase-Change Memory;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-10

4. Energy Efficiency Enhancement of SCM-Based Systems: Write-Friendly Coding;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-05

5. Architecting Optically Controlled Phase Change Memory;ACM Transactions on Architecture and Code Optimization;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3