Affiliation:
1. Arizona State University, Tempe, AZ
2. IEEE Member, MA, USA
Abstract
Modern multiprocessor system-on-chips (SoCs) integrate multiple heterogeneous cores to achieve high energy efficiency. The power consumption of each core contributes to an increase in the temperature across the chip floorplan. In turn, higher temperature increases the leakage power exponentially, and leads to a positive feedback with nonlinear dynamics. This paper presents a power-temperature stability and safety analysis technique for multiprocessor systems. This analysis reveals the conditions under which the power-temperature trajectory converges to a stable fixed point. We also present a simple formula to compute the stable fixed point and maximum thermally-safe power consumption at
runtime
. Hardware measurements on a state-of-the-art mobile processor show that our analytical formulation can predict the stable fixed point with an average error of 2.6%. Hence, our approach can be used at runtime to ensure thermally safe operation and guard against thermal threats.
Funder
Semiconductor Research Corporation
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献