Non-linear reasoning for invariant synthesis

Author:

Kincaid Zachary1,Cyphert John2,Breck Jason2,Reps Thomas3

Affiliation:

1. Princeton University, USA

2. University of Wisconsin-Madison, USA

3. University of Wisconsin-Madison, USA / GrammaTech, USA

Abstract

Automatic generation of non-linear loop invariants is a long-standing challenge in program analysis, with many applications. For instance, reasoning about exponentials provides a way to find invariants of digital-filter programs, and reasoning about polynomials and/or logarithms is needed for establishing invariants that describe the time or memory usage of many well-known algorithms. An appealing approach to this challenge is to exploit the powerful recurrence-solving techniques that have been developed in the field of computer algebra, which can compute exact characterizations of non-linear repetitive behavior. However, there is a gap between the capabilities of recurrence solvers and the needs of program analysis: (1) loop bodies are not merely systems of recurrence relations---they may contain conditional branches, nested loops, non-deterministic assignments, etc., and (2) a client program analyzer must be able to reason about the closed-form solutions produced by a recurrence solver (e.g., to prove assertions). This paper presents a method for generating non-linear invariants of general loops based on analyzing recurrence relations. The key components are an abstract domain for reasoning about non-linear arithmetic, a semantics-based method for extracting recurrence relations from loop bodies, and a recurrence solver that avoids closed forms that involve complex or irrational numbers. Our technique has been implemented in a program analyzer that can analyze general loops and mutually recursive procedures. Our experiments show that our technique shows promise for non-linear assertion-checking and resource-bound generation.

Funder

Defense Advanced Research Projects Agency

Wisconsin Alumni Research Foundation

Rajiv and Ritu Batra

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3