On Strongest Algebraic Program Invariants

Author:

Hrushovski Ehud1,Ouaknine Joël2,Pouly Amaury3,Worrell James1

Affiliation:

1. Oxford University, UK

2. Max Planck Institute for Software Systems, Germany

3. Université de Paris, IRIF, CNRS, France

Abstract

A polynomial program is one in which all assignments are given by polynomial expressions and in which all branching is nondeterministic (as opposed to conditional). Given such a program, an algebraic invariant is one that is defined by polynomial equations over the program variables at each program location. Müller-Olm and Seidl have posed the question of whether one can compute the strongest algebraic invariant of a given polynomial program. In this article, we show that, while strongest algebraic invariants are not computable in general, they can be computed in the special case of affine programs, that is, programs with exclusively linear assignments. For the latter result, our main tool is an algebraic result of independent interest: Given a finite set of rational square matrices of the same dimension, we show how to compute the Zariski closure of the semigroup that they generate.

Funder

ERC

DFG

EPSRC Fellowship

UKRI Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference47 articles.

1. S. Almagor, D. Chistikov, J. Ouaknine, and J. Worrell. 2018. O-minimal invariants for linear loops. In Proceedings of the 45th International Colloquium on Automata, Languages and Programming. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

2. L. Babai, R. Beals, J.-Y. Cai, G. Ivanyos, and E. M. Luks. 1996. Multiplicative equations over commuting matrices. In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms.498–507.

3. Gröbner Bases

4. Decidable and Undecidable Problems about Quantum Automata

5. A. R. Bradley and Z. Manna. 2007. The Calculus of Computation—Decision Procedures with Applications to Verification. Springer.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algebraic Tools for Computing Polynomial Loop Invariants;Proceedings of the 2024 International Symposium on Symbolic and Algebraic Computation;2024-07-16

2. Slice closures of indexed languages and word equations with counting constraints;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

3. INVARIANT POLYNOMIALS WITH APPLICATIONS TO QUANTUM COMPUTING;Herald of the Kazakh-British technical university;2024-07-01

4. (Un)Solvable loop analysis;Formal Methods in System Design;2024-06-11

5. Strong Invariants Are Hard: On the Hardness of Strongest Polynomial Invariants for (Probabilistic) Programs;Proceedings of the ACM on Programming Languages;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3