Vitruvius+: An Area-Efficient RISC-V Decoupled Vector Coprocessor for High Performance Computing Applications

Author:

Minervini Francesco1ORCID,Palomar Oscar1ORCID,Unsal Osman1ORCID,Reggiani Enrico1ORCID,Quiroga Josue1ORCID,Marimon Joan1ORCID,Rojas Carlos1ORCID,Figueras Roger1ORCID,Ruiz Abraham1ORCID,Gonzalez Alberto1ORCID,Mendoza Jonnatan1ORCID,Vargas Ivan1ORCID,Hernandez César1ORCID,Cabre Joan1ORCID,Khoirunisya Lina1ORCID,Bouhali Mustapha1ORCID,Pavon Julian1ORCID,Moll Francesc1ORCID,Olivieri Mauro1ORCID,Kovac Mario2ORCID,Kovac Mate2ORCID,Dragic Leon2ORCID,Valero Mateo1ORCID,Cristal Adrian1ORCID

Affiliation:

1. Barcelona Supercomputing Center, Barcelona, Spain

2. University of Zagreb, FER, Zagreb, Croatia

Abstract

The maturity level of RISC-V and the availability of domain-specific instruction set extensions, like vector processing, make RISC-V a good candidate for supporting the integration of specialized hardware in processor cores for the High Performance Computing (HPC) application domain. In this article, 1 we present Vitruvius+, the vector processing acceleration engine that represents the core of vector instruction execution in the HPC challenge that comes within the EuroHPC initiative. It implements the RISC-V vector extension (RVV) 0.7.1 and can be easily connected to a scalar core using the Open Vector Interface standard. Vitruvius+ natively supports long vectors: 256 double precision floating-point elements in a single vector register. It is composed of a set of identical vector pipelines (lanes), each containing a slice of the Vector Register File and functional units (one integer, one floating point). The vector instruction execution scheme is hybrid in-order/out-of-order and is supported by register renaming and arithmetic/memory instruction decoupling. On a stand-alone synthesis, Vitruvius+ reaches a maximum frequency of 1.4 GHz in typical conditions (TT/0.80V/25°C) using GlobalFoundries 22FDX FD-SOI. The silicon implementation has a total area of 1.3 mm 2 and maximum estimated power of ∼920 mW for one instance of Vitruvius+ equipped with eight vector lanes.

Funder

European High Performance Computing Joint Undertaking (JU) under Framework Partnership

European Union’s Horizon 2020 research and innovation programme

EPI-SGA2 project

Spanish Ministry of Science and Innovation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference45 articles.

1. Rob Aitken. 2021. Performance per Watt Is the New Moore’s Law. Retrieved December 15 2022 from https://www.arm.com/blogs/blueprint/performance-per-watt.

2. AndesCore. 2020. AndesCore NX27V Processor 64-bit CPU with RISC-V Vector Extension. Retrieved May 29 2022 from http://www.andestech.com/en/products-solutions/andescore-processors/riscv-nx27v/.

3. Power/Performance/Area Evaluations for Next-Generation HPC Processors using the A64FX Chip

4. Imad Al Assir Mohamad El Iskandarani Hadi Rayan Al Sandid and Mazen A. R. Saghir. 2021. Arrow: A RISC-V vector accelerator for machine learning inference. arxiv:2107.07169 (2021).

5. Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance RISC-V Processor with Vector Extension : Industrial Product

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Co-designing ab initio electronic structure methods on a RISC-V vector architecture;Open Research Europe;2024-08-05

2. Ara2: Exploring Single- and Multi-Core Vector Processing With an Efficient RVV 1.0 Compliant Open-Source Processor;IEEE Transactions on Computers;2024-07

3. QUETZAL: Vector Acceleration Framework for Modern Genome Sequence Analysis Algorithms;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

4. Exploiting long vectors with a CFD code: a co-design show case;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

5. A Universal Hardware Emulator for Verification IPs on FPGA: A Novel and Low-Cost Approach;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3