Affiliation:
1. University of Science and Technology of China
Abstract
Due to the super scale, high defect density, and per-chip designing paradigm of emerging nanoelectronics, the runtime of the algorithms for defect-tolerant design is of vital importance from the perspective of practicability. In this article, an efficient and effective heuristic defect-free subcrossbar extraction algorithm is proposed which improves performance by mixing the heuristics from two state-of-the-art algorithms and then is speeded up significantly by considerably reducing the number of major loops. Compared with the current most effective algorithm that improves the solution quality (i.e., size of the defect-free subcrossbar obtained) at the cost of high time complexity
O
(
n
3
), the time complexity of the proposed heuristic algorithm is proved to be
O
(
n
2
). Using a large set of instances of various scales and defect densities, the simulation results show that the proposed algorithm can offer similar high-quality solutions as the current most effective algorithm while consuming much shorter runtimes (reduced to about 1/3 to 1/5) than the current most effective algorithm.
Funder
National Natural Science Foundation of China
Innovation Fund for Young Researchers of the University of Science and Technology of China
Seventh Framework Programme
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献