Maximum and top-k diversified biclique search at scale

Author:

Lyu Bingqing,Qin LuORCID,Lin Xuemin,Zhang Ying,Qian Zhengping,Zhou Jingren

Abstract

AbstractMaximum biclique search, which finds the biclique with the maximum number of edges in a bipartite graph, is a fundamental problem with a wide spectrum of applications in different domains, such as E-Commerce, social analysis, web services, and bioinformatics. Unfortunately, due to the difficulty of the problem in graph theory, no practical solution has been proposed to solve the issue in large-scale real-world datasets. Existing techniques for maximum clique search on a general graph cannot be applied because the search objective of maximum biclique search is two-dimensional, i.e., we have to consider the size of both parts of the biclique simultaneously. In this paper, we divide the problem into several subproblems each of which is specified using two parameters. These subproblems are derived in a progressive manner, and in each subproblem, we can restrict the search in a very small part of the original bipartite graph. We prove that a logarithmic number of subproblems is enough to guarantee the algorithm correctness. To minimize the computational cost, we show how to reduce significantly the bipartite graph size for each subproblem while preserving the maximum biclique satisfying certain constraints by exploring the properties of one-hop and two-hop neighbors for each vertex. Furthermore, we study the diversified top-k biclique search problem which aims to find k maximal bicliques that cover the most edges in total. The basic idea is to repeatedly find the maximum biclique in the bipartite graph and remove it from the bipartite graph k times. We design an efficient algorithm that considers to share the computation cost among the k results, based on the idea of deriving the same subproblems of different results. We further propose two optimizations to accelerate the computation by pruning the search space with size constraint and refining the candidates in a lazy manner. We use several real datasets from various application domains, one of which contains over 300 million vertices and 1.3 billion edges, to demonstrate the high efficiency and scalability of our proposed solution. It is reported that 50% improvement on recall can be achieved after applying our method in Alibaba Group to identify the fraudulent transactions in their e-commerce networks. This further demonstrates the usefulness of our techniques in practice.

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3