Accurate and fast system-level power modeling

Author:

Varma Ankush1,Debes Eric2,Kozintsev Igor2,Klein Paul2,Jacob Bruce3

Affiliation:

1. University of Maryland, College Park, Maryland and Intel Research Labs, Santa Clara, California

2. Intel Research Labs, Santa Clara, California

3. University of Maryland, College Park, Maryland

Abstract

Accurate and fast system modeling is central to the rapid design space exploration needed for embedded-system design. With fast, complex SoCs playing a central role in such systems, system designers have come to require MIPS-range simulation speeds and near-cycle accuracy. The sophisticated simulation frameworks that have been developed for high-speed system performance modeling do not address power consumption, although it is a key design constraint. In this paper, we define a simulation-based methodology for extending system performance modeling frameworks to also include power modeling. We demonstrate the use of this methodology with a case study of a real, complex embedded system, comprising the Intel XScale embedded microprocessor, its WMMX SIMD co processor, L1 caches, SDRAM, and the on-board address and data buses. We describe detailed power models for each of these components and validate them against physical measurements from hardware, demonstrating that such frameworks enable designers to model both power and performance at high speeds without sacrificing accuracy. Our results indicate that the power estimates obtained are accurate within 5% of physical measurements from hardware, while simulation speeds consistently exceed a million instructions per second (MIPS).

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SimPoint-Based Microarchitectural Hotspot & Energy-Efficiency Analysis of RISC-V OoO CPUs;2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS);2024-05-05

2. High-level power estimation techniques in embedded systems hardware: an overview;The Journal of Supercomputing;2022-09-08

3. Power Modeling and Characterization;Transaction-Level Power Modeling;2019-08-01

4. Related Work;Power Estimation on Electronic System Level using Linear Power Models;2018-12-15

5. Low-Power Time Deinterleaver for ISDB-T Receiver;IEEE Transactions on Circuits and Systems II: Express Briefs;2012-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3