Time-Warp

Author:

Diegues Nuno1,Romano Paolo1

Affiliation:

1. INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal

Abstract

The multicore revolution that took place one decade ago has turned parallel programming into a major concern for the mainstream software development industry. In this context, Transactional Memory (TM) has emerged as a simpler and attractive alternative to that of lock-based synchronization, whose complexity and error-proneness are widely recognized. The notion of permissiveness in TM translates to only aborting a transaction when it cannot be accepted in any history that guarantees a target correctness criterion. This theoretically powerful property is often neglected by state-of-the-art TMs because it imposes considerable algorithmic costs. Instead, these TMs opt to maximize their implementation’s efficiency by aborting transactions under overly conservative conditions. As a result, they risk rejecting a significant number of safe executions. In this article, we seek to identify a sweet spot between permissiveness and efficiency by introducing the Time-Warp Multiversion (TWM) algorithm. TWM is based on the key idea of allowing an update transaction that has performed stale reads (i.e., missed the writes of concurrently committed transactions) to be serialized by “committing it in the past,” which we call a time-warp commit. At its core, TWM uses a novel, lightweight validation mechanism with little computational overhead. TWM also guarantees that read-only transactions can never be aborted. Further, TWM guarantees Virtual World Consistency , a safety property that is deemed as particularly relevant in the context of TM. We demonstrate the practicality of this approach through an extensive experimental study: we compare TWM with five other TMs, representative of typical alternative design choices, and on a wide variety of benchmarks. This study shows an average performance improvement across all considered workloads and TMs of 65% in high concurrency scenarios, with gains extending up to 9 × with the most favorable benchmarks. These results are a consequence of TWM’s ability to achieve drastic reduction of aborts in scenarios of nonminimal contention, while introducing little overhead (approximately 10%) in worst-case, synthetically designed scenarios (i.e., no contention or contention patterns that cannot be optimized using TWM).

Funder

GreenTM FCT Project

specSTM FCT Project

Fundacao para a Ciencia e Tecnologia

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VERLIB: Concurrent Versioned Pointers;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

2. Constant-time snapshots with applications to concurrent data structures;Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming;2021-02-17

3. Transactions in relaxed memory architectures;Proceedings of the ACM on Programming Languages;2018-01

4. Self-tuning Intel Restricted Transactional Memory;Parallel Computing;2015-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3