Face2Face

Author:

Thies Justus1,Zollhöfer Michael2,Stamminger Marc3,Theobalt Christian4,Nießner Matthias1

Affiliation:

1. Technical University Munich, Garching, Germany

2. Stanford University, Stanford, CA

3. University of Erlangen-Nuremberg, Erlangen, Germany

4. Max-Planck-Institute for Informatics, Saarbrücken, Germany

Abstract

Face2Face is an approach for real-time facial reenactment of a monocular target video sequence (e.g., Youtube video). The source sequence is also a monocular video stream, captured live with a commodity webcam. Our goal is to animate the facial expressions of the target video by a source actor and re-render the manipulated output video in a photo-realistic fashion. To this end, we first address the under-constrained problem of facial identity recovery from monocular video by non-rigid model-based bundling. At run time, we track facial expressions of both source and target video using a dense photometric consistency measure. Reenactment is then achieved by fast and efficient deformation transfer between source and target. The mouth interior that best matches the re-targeted expression is retrieved from the target sequence and warped to produce an accurate fit. Finally, we convincingly re-render the synthesized target face on top of the corresponding video stream such that it seamlessly blends with the real-world illumination. We demonstrate our method in a live setup, where Youtube videos are reenacted in real time. This live setup has also been shown at SIGGRAPH Emerging Technologies 2016, by Thies et al. where it won the Best in Show Award.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on deep learning based reenactment methods for deepfake applications;IET Image Processing;2024-08-19

2. Test-time Forgery Detection with Spatial-Frequency Prompt Learning;International Journal of Computer Vision;2024-08-13

3. Consumer Engagement;Advances in Information Security, Privacy, and Ethics;2024-07-26

4. Detection of fake face images using lightweight convolutional neural networks with stacking ensemble learning method;PeerJ Computer Science;2024-06-17

5. Improved Deepfake Video Detection Using Convolutional Vision Transformer;2024 IEEE Gaming, Entertainment, and Media Conference (GEM);2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3