1. Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2018). Mesonet: A compact facial video forgery detection network. In IEEE International Workshop on Information Forensics and Security, pp 1–7.
2. Bai, W., Liu, Y., Zhang, Z., Li, B., & Hu, W. (2023). Aunet: Learning relations between action units for face forgery detection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 24709–24719.
3. Bartler, A., Bühler, A., Wiewel, F., Döbler, M., & Yang, B. (2022). MT3: Meta test-time training for self-supervised test-time adaption. International Conference on Artificial Intelligence and Statistics, 151, 3080–3090.
4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.
5. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., & Yang, X. (2022). End-to-end reconstruction-classification learning for face forgery detection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 4103–4112.