Detection of fake face images using lightweight convolutional neural networks with stacking ensemble learning method

Author:

Şafak Emre12,Barışçı Necaattin2

Affiliation:

1. R&D Technology and Innovation Department, HAVELSAN, Ankara, Türkiye

2. Department of Computer Engineering, Gazi University Ankara, Ankara, Türkiye

Abstract

Images and videos containing fake faces are the most common type of digital manipulation. Such content can lead to negative consequences by spreading false information. The use of machine learning algorithms to produce fake face images has made it challenging to distinguish between genuine and fake content. Face manipulations are categorized into four basic groups: entire face synthesis, face identity manipulation (deepfake), facial attribute manipulation and facial expression manipulation. The study utilized lightweight convolutional neural networks to detect fake face images generated by using entire face synthesis and generative adversarial networks. The dataset used in the training process includes 70,000 real images in the FFHQ dataset and 70,000 fake images produced with StyleGAN2 using the FFHQ dataset. 80% of the dataset was used for training and 20% for testing. Initially, the MobileNet, MobileNetV2, EfficientNetB0, and NASNetMobile convolutional neural networks were trained separately for the training process. In the training, the models were pre-trained on ImageNet and reused with transfer learning. As a result of the first trainings EfficientNetB0 algorithm reached the highest accuracy of 93.64%. The EfficientNetB0 algorithm was revised to increase its accuracy rate by adding two dense layers (256 neurons) with ReLU activation, two dropout layers, one flattening layer, one dense layer (128 neurons) with ReLU activation function, and a softmax activation function used for the classification dense layer with two nodes. As a result of this process accuracy rate of 95.48% was achieved with EfficientNetB0 algorithm. Finally, the model that achieved 95.48% accuracy was used to train MobileNet and MobileNetV2 models together using the stacking ensemble learning method, resulting in the highest accuracy rate of 96.44%.

Publisher

PeerJ

Reference36 articles.

1. Understanding of a convolutional neural network;Albawi,2017

2. DA-FDFtNet: dual attention fake detection fine-tuning network to detect various ai-generated fake images;Bang,2021

3. The influence of pattern similarity and transfer of learning upon training of a base perceptron B2;Bozinovski,1976

4. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation;Choi,2018

5. A stacking-based ensemble learning method for earthquake casualty prediction;Cui;Applied Soft Computing,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3