A Scalable Wear Leveling Technique for Phase Change Memory

Author:

Xu Wang1ORCID,Koren Israel1ORCID

Affiliation:

1. University of Massachusetts, Amherst, USA

Abstract

Phase Change Memory (PCM), one of the recently proposed non-volatile memory technologies, has been suffering from low write endurance. For example, a single-layer PCM cell could only be written approximately 10 8 . This limits the lifetime of a PCM-based memory to a few days rather than years when memory-intensive applications are running. Wear leveling techniques have been proposed to improve the write endurance of a PCM. Among those techniques, the region-based start-gap (RBSG) scheme is widely cited as achieving the highest lifetime. Based on our experiments, RBSG can achieve 97% of the ideal lifetime, but only for relatively small memory sizes (e.g., 8–32GB). As the memory size goes up, RBSG becomes less effective and its expected percentage of the ideal lifetime reduces to less than 57% for a 2TB PCM. In this article, we propose a table-based wear leveling scheme called block grouping to enhance the write endurance of a PCM with a negligible overhead. Our research results show that with a proper configuration and adoption of partial writes (writing back only 64B subblocks instead of a whole row to the PCM arrays) and internal row shift (shifting the subblocks in a row periodically so no subblock in a row will be written repeatedly), the proposed block grouping scheme could achieve 95% of the ideal lifetime on average for the Rodinia, NPB, and SPEC benchmarks with less than 1.74% performance overhead and up to 0.18% hardware overhead. Moreover, our scheme is scalable and achieves the same percentage of ideal lifetime for PCM of size from 8GB to 2TB. We also show that the proposed scheme can better tolerate memory write attacks than WoLFRaM (Wear Leveling and Fault Tolerance for Resistive Memories) and RBSG for a PCM of size 32GB or higher. Finally, we integrate an error-correcting pointer technique into our proposed block grouping scheme to make the PCM fault tolerant against hard errors.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Reference30 articles.

1. MFNW

2. Lecture: DRAM Main Memory;Balasubramonian R.;Retrieved November 8, 2023 fromhttps://my.eng.utah.edu/~cs6810/pres/12-6810-15c.pdf,2008

3. An Evaluation of High-Level Mechanistic Core Models

4. Rodinia: A benchmark suite for heterogeneous computing

5. Flip-N-Write

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3