MFNW

Author:

Alsuwaiyan Ali1,Mohanram Kartik2

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA

2. University of Pittsburgh, Benedum Hall, Pittsburgh, PA

Abstract

The increased capacity of multi-level cells (MLC) and triple-level cells (TLC) in emerging non-volatile memory (NVM) technologies comes at the cost of higher cell write energies and lower cell endurance. In this article, we describe MFNW, a Flip-N-Write encoding that effectively reduces the write energy and improves the endurance of MLC NVMs. Two MFNW modes are analyzed: cell Hamming distance mode and energy Hamming distance mode. We derive an approximate model that accurately predicts the average number of cell writes that is proportional to the energy consumption, enabling word length optimization to maximize energy reduction subject to memory space overhead constraints. In comparison to state-of-the-art MLC NVM encodings, our simulation results indicate that MFNW achieves up to 7%--39% saving for 1.56%--50% NVM space overhead. Extra energy saving (up to 19%--47%) can be achieved for the same NVM space overhead using our proposed variations of MFNW, i.e., MFNW2 and MFNW3. For TLC NVMs, we propose TFNW that can achieve up to 53% energy saving in comparison to state-of-the-art TLC NVM encodings. Endurance simulations indicate that MFNW (TFNW) is capable of extending MLC (TLC) NVM life by up to 100% (87%).

Funder

National Science Foundation

King Fahd University of Petroleum and Minerals

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scalable Wear Leveling Technique for Phase Change Memory;ACM Transactions on Storage;2024-01-30

2. Relieving Compression-Induced Local Wear on Non-Volatile Memory Block via Sliding Writes;Micromachines;2023-02-27

3. Granularity-Driven Management for Reliable and Efficient Skyrmion Racetrack Memories;IEEE Transactions on Emerging Topics in Computing;2023-01-01

4. RC-NVM: Recovery-Aware Reliability-Security Co-Design for Non-Volatile Memories;IEEE Transactions on Dependable and Secure Computing;2023

5. A Low-Latency and High-Endurance MLC STT-MRAM-Based Cache System;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3