An Evaluation of High-Level Mechanistic Core Models

Author:

Carlson Trevor E.1,Heirman Wim2,Eyerman Stijn1,Hur Ibrahim2,Eeckhout Lieven1

Affiliation:

1. Ghent University, Gent, Belgium

2. Intel, ExaScience Lab, Leuven, Belgium

Abstract

Large core counts and complex cache hierarchies are increasing the burden placed on commonly used simulation and modeling techniques. Although analytical models provide fast results, they do not apply to complex, many-core shared-memory systems. In contrast, detailed cycle-level simulation can be accurate but also tends to be slow, which limits the number of configurations that can be evaluated. A middle ground is needed that provides for fast simulation of complex many-core processors while still providing accurate results. In this article, we explore, analyze, and compare the accuracy and simulation speed of high-abstraction core models as a potential solution to slow cycle-level simulation. We describe a number of enhancements to interval simulation to improve its accuracy while maintaining simulation speed. In addition, we introduce the instruction-window centric (IW-centric) core model, a new mechanistic core model that bridges the gap between interval simulation and cycle-accurate simulation by enabling high-speed simulations with higher levels of detail. We also show that using accurate core models like these are important for memory subsystem studies, and that simple, naive models, like a one-IPC core model, can lead to misleading and incorrect results and conclusions in practical design studies. Validation against real hardware shows good accuracy, with an average single-core error of 11.1% and a maximum of 18.8% for the IW-centric model with a 1.5× slowdown compared to interval simulation.

Funder

Seventh Framework Programme

Agentschap voor Innovatie door Wetenschap en Technologie

Intel Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scalable Wear Leveling Technique for Phase Change Memory;ACM Transactions on Storage;2024-01-30

2. Improving the Representativeness of Simulation Intervals for the Cache Memory System;IEEE Access;2024

3. CAMP: a hierarchical cache architecture for multi-core mixed criticality processors;International Journal of Parallel, Emergent and Distributed Systems;2023-12-19

4. NeuroCool: Dynamic Thermal Management of 3D DRAM for Deep Neural Networks through Customized Prefetching;ACM Transactions on Design Automation of Electronic Systems;2023-12-18

5. Lifetime Estimation for Core-Failure Resilient Multi-Core Processors;2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3