Intrinsic Robustness of the Price of Anarchy

Author:

Roughgarden Tim1

Affiliation:

1. Stanford University, Stanford, CA

Abstract

The price of anarchy, defined as the ratio of the worst-case objective function value of a Nash equilibrium of a game and that of an optimal outcome, quantifies the inefficiency of selfish behavior. Remarkably good bounds on this measure are known for a wide range of application domains. However, such bounds are meaningful only if a game's participants successfully reach a Nash equilibrium. This drawback motivates inefficiency bounds that apply more generally to weaker notions of equilibria, such as mixed Nash equilibria and correlated equilibria, and to sequences of outcomes generated by natural experimentation strategies, such as successive best responses and simultaneous regret-minimization. We establish a general and fundamental connection between the price of anarchy and its seemingly more general relatives. First, we identify a “canonical sufficient condition” for an upper bound on the price of anarchy of pure Nash equilibria, which we call a smoothness argument . Second, we prove an “extension theorem”: every bound on the price of anarchy that is derived via a smoothness argument extends automatically , with no quantitative degradation in the bound, to mixed Nash equilibria, correlated equilibria, and the average objective function value of every outcome sequence generated by no-regret learners. Smoothness arguments also have automatic implications for the inefficiency of approximate equilibria, for bicriteria bounds, and, under additional assumptions, for polynomial-length best-response sequences. Third, we prove that in congestion games, smoothness arguments are “complete” in a proof-theoretic sense: despite their automatic generality, they are guaranteed to produce optimal worst-case upper bounds on the price of anarchy.

Funder

AFOSR MURI

Alfred P. Sloan Fellowship

ONR PECASE Award

NSF

ONR Young Investigator Award

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3