Security refresh

Author:

Seong Nak Hee1,Woo Dong Hyuk1,Lee Hsien-Hsin S.1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Phase change memory (PCM) is an emerging memory technology for future computing systems. Compared to other non-volatile memory alternatives, PCM is more matured to production, and has a faster read latency and potentially higher storage density. The main roadblock precluding PCM from being used, in particular, in the main memory hierarchy, is its limited write endurance. To address this issue, recent studies proposed to either reduce PCM's write frequency or use wear-leveling to evenly distribute writes. Although these techniques can extend the lifetime of PCM, most of them will not prevent deliberately designed malicious codes from wearing it out quickly. Furthermore, all the prior techniques did not consider the circumstances of a compromised OS and its security implication to the overall PCM design. A compromised OS will allow adversaries to manipulate processes and exploit side channels to accelerate wear-out. In this paper, we argue that a PCM design not only has to consider normal wear-out under normal application behavior, most importantly, it must take the worst-case scenario into account with the presence of malicious exploits and a compromised OS to address the durability and security issues simultaneously. In this paper, we propose a novel, low-cost hardware mechanism called Security Refresh to avoid information leak by constantly migrating their physical locations inside the PCM, obfuscating the actual data placement from users and system software. It uses a dynamic randomized address mapping scheme that swaps data using random keys upon each refresh due. The hardware overhead is tiny without using any table. The best lifetime we can achieve under the worst-case malicious attack is more than six years. Also, our scheme incurs around 1% performance degradation for normal program operations.

Publisher

Association for Computing Machinery (ACM)

Reference25 articles.

1. International Technology Roadmap for Semiconductors Emerging Research Devices 2007. International Technology Roadmap for Semiconductors Emerging Research Devices 2007.

2. Flip-N-Write

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scalable Wear Leveling Technique for Phase Change Memory;ACM Transactions on Storage;2024-01-30

2. OML-PCM: optical multi-level phase change memory architecture for embedded computing systems;Engineering Research Express;2023-12-01

3. A survey on techniques for improving Phase Change Memory (PCM) lifetime;Journal of Systems Architecture;2023-11

4. BTI aging-based physical cloning attack on SRAM PUF and the countermeasure;Analog Integrated Circuits and Signal Processing;2023-06-29

5. WIB-SAR: Write Intensity Based Selective Address Remapping;2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID);2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3