Affiliation:
1. Microsoft Research, Redmond, WA, USA
2. Georgia Institute of Technology, Atlanta, GA, USA
Abstract
As leakage and other charge storage limitations begin to impair the scalability of DRAM, non-volatile resistive memories are being developed as a potential replacement. Unfortunately, current error correction techniques are poorly suited to this emerging class of memory technologies. Unlike DRAM, PCM and other resistive memories have wear lifetimes, measured in writes, that are sufficiently short to make cell failures common during a system's lifetime. However, resistive memories are much less susceptible to transient faults than DRAM. The Hamming-based ECC codes used in DRAM are designed to handle transient faults with no effective lifetime limits, but ECC codes applied to resistive memories would wear out faster than the cells they are designed to repair. This paper evaluates
Error-Correcting Pointers
(ECP), a new approach to error correction optimized for memories in which errors are the result of permanent cell failures that occur, and are immediately detectable, at write time. ECP corrects errors by permanently encoding the locations of failed cells into a table and assigning cells to replace them. ECP provides longer lifetimes than previously proposed solutions with equivalent overhead. What's more, as the level of variance in cell lifetimes increases -- a likely consequence of further scalaing -- ECP's margin of improvement over existing schemes increases.
Publisher
Association for Computing Machinery (ACM)
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献