L2C2: Last-level compressed-contents non-volatile cache and a procedure to forecast performance and lifetime

Author:

Escuin CarlosORCID,Ibáñez Pablo,Navarro Denis,Monreal TeresaORCID,Llabería José M.,Viñals Víctor

Abstract

Several emerging non-volatile (NV) memory technologies are rising as interesting alternatives to build the Last-Level Cache (LLC). Their advantages, compared to SRAM memory, are higher density and lower static power, but write operations wear out the bitcells to the point of eventually losing their storage capacity. In this context, this paper presents a novel LLC organization designed to extend the lifetime of the NV data array and a procedure to forecast in detail the capacity and performance of such an NV-LLC over its lifetime. From a methodological point of view, although different approaches are used in the literature to analyze the degradation of an NV-LLC, none of them allows to study in detail its temporal evolution. In this sense, this work proposes a forecasting procedure that combines detailed simulation and prediction, allowing an accurate analysis of the impact of different cache control policies and mechanisms (replacement, wear-leveling, compression, etc.) on the temporal evolution of the indices of interest, such as the effective capacity of the NV-LLC or the system IPC. We also introduce L2C2, a LLC design intended for implementation in NV memory technology that combines fault tolerance, compression, and internal write wear leveling for the first time. Compression is not used to store more blocks and increase the hit rate, but to reduce the write rate and increase the lifetime during which the cache supports near-peak performance. In addition, to support byte loss without performance drop, L2C2 inherently allows N redundant bytes to be added to each cache entry. Thus, L2C2+N, the endurance-scaled version of L2C2, allows balancing the cost of redundant capacity with the benefit of longer lifetime. For instance, as a use case, we have implemented the L2C2 cache with STT-RAM technology. It has affordable hardware overheads compared to that of a baseline NV-LLC without compression in terms of area, latency and energy consumption, and increases up to 6-37 times the time in which 50% of the effective capacity is degraded, depending on the variability in the manufacturing process. Compared to L2C2, L2C2+6 which adds 6 bytes of redundant capacity per entry, that means 9.1% of storage overhead, can increase up to 1.4-4.3 times the time in which the system gets its initial peak performance degraded.

Funder

Agencia Estatal de Investigación

Gobierno de Aragón

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference65 articles.

1. Sakhare S, Perumkunnil M, Bao TH, Rao S, Kim W, Crotti D, et al. Enablement of STT-MRAM as last level cache for the high performance computing domain at the 5nm node. In: 2018 IEEE Int. Electron Devices Meeting (IEDM); 2018. p. 18.3.1–18.3.4.

2. Lee BC, Ipek E, Mutlu O, Burger D. Architecting phase change memory as a scalable dram alternative. In: Proc. of the 36th annual Int. Symp. on Computer architecture; 2009. p. 2–13.

3. Phase change memory: From devices to systems;MK Qureshi;Synthesis Lectures on Computer Architecture,2011

4. Joo Y, Niu D, Dong X, Sun G, Chang N, Xie Y. Energy-and endurance-aware design of phase change memory caches. In: 2010 Design, Automation & Test in Europe Conf. & Exhibition (DATE 2010). IEEE; 2010. p. 136–141.

5. Spin-transfer torque magnetic random access memory (STT-MRAM);D Apalkov;ACM Journal on Emerging Technologies in Computing Systems (JETC),2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compression-Aware and Performance-Efficient Insertion Policies for Long-Lasting Hybrid LLCs;2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3