Fast and Precise Worst-Case Interference Placement for Shared Cache Analysis

Author:

Nagar Kartik1ORCID,Srikant Y. N.1

Affiliation:

1. Indian Institute of Science, Bangalore, India

Abstract

Real-time systems require a safe and precise estimate of the worst-case execution time (WCET) of programs. In multicore architectures, the precision of a program’s WCET estimate highly depends on the precision of its predicted shared cache behavior. Prediction of shared cache behavior is difficult due to the uncertain timing of interfering shared cache accesses made by programs running on other cores. Given the assignment of programs to cores, the worst-case interference placement (WCIP) technique tries to find the worst-case timing of interfering accesses, which would cause the maximum number of cache misses on the worst case path of the program, to determine its WCET. Although WCIP generates highly precise WCET estimates, the current ILP-based approach is also known to have very high analysis time. In this work, we investigate the WCIP problem in detail and determine its source of hardness. We show that performing WCIP is an NP-hard problem by reducing the 0-1 knapsack problem. We use this observation to make simplifying assumptions, which make the WCIP problem tractable, and we propose an approximate greedy technique for WCIP, whose time complexity is linear in the size of the program. We perform extensive experiments to show that the assumptions do not affect the precision of WCIP but result in significant reduction of analysis time.

Funder

IMPECS Project

Microsoft Corporation and Microsoft Research India

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kryptonite: Worst-Case Program Interference Estimation on Multi-Core Embedded Systems;ACM Transactions on Embedded Computing Systems;2023-09-09

2. Wcet Analysis of Multilevel Date Cache with Multitier Coherence Protocol;2023

3. Precise Shared Instruction Cache Analysis to Estimate WCET of Multi-threaded Programs;2021 IEEE 18th India Council International Conference (INDICON);2021-12-19

4. A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems;ACM Computing Surveys;2020-05-31

5. A Dynamic Multi-Objective Evolutionary Algorithm for Nontrivial Upper Bounds of Real-Time Tasks in Embedded System Design;2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI);2018-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3