A Multi-Level-Optimization Framework for FPGA-Based Cellular Neural Network Implementation

Author:

Liu Zhongyang1,Luo Shaoheng1,Xu Xiaowei2ORCID,Shi Yiyu2,Zhuo Cheng1

Affiliation:

1. Zhejiang University, Hangzhou, China

2. University of Notre Dame, IN, USA

Abstract

Cellular Neural Network (CeNN) is considered as a powerful paradigm for embedded devices. Its analog and mix-signal hardware implementations are proved to be applicable to high-speed image processing, video analysis, and medical signal processing with its efficiency and popularity limited by smaller implementation size and lower precision. Recently, digital implementations of CeNNs on FPGA have attracted researchers from both academia and industry due to its high flexibility and short time-to-market. However, most existing implementations are not well optimized to fully utilize the advantages of FPGA platform with unnecessary design and computational redundancy that prevents speedup. We propose a multi-level-optimization framework for energy-efficient CeNN implementations on FPGAs. In particular, the optimization framework is featured with three level optimizations: system-, module-, and design-space-level, with focus on computational redundancy and attainable performance, respectively. Experimental results show that with various configurations our framework can achieve an energy-efficiency improvement of 3.54× and up to 3.88× speedup compared with existing implementations with similar accuracy.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference33 articles.

1. From layout to system: Early stage power delivery and architecture co-exploration;Zhuo Cheng;IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. PP,2018

2. Silicon-Validated Power Delivery Modeling and Analysis on a 32-nm DDR I/O Interface

3. Edge detection of noisy images based on cellular neural networks

4. Edge detection in satellite image using cellular neural network;Gazi Osama Basil;System,2014

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3