Dynamic Effects of a MCNN-CS Under Electromagnetic Induction and Its Application

Author:

Zhang Fengqing1,Shi Hang1,Ji’e Musha1,Wang Lidan2,Duan Shukai2

Affiliation:

1. School of Electronic and Information Engineering, Southwest University, Chongqing 400715, P. R. China

2. College of Artificial Intelligence, Southwest University, Chongqing 400715, P. R. China

Abstract

Cellular neural network (CNN) is one of the best artificial neural network models due to its hardware implementability and many applications for image processing. The memristor-based cellular neural network (MCNN) combines the distinct benefits of memristors and neural networks, and it excels in mimicking chaotic systems under the effect of electromagnetic induction. In this work, a novel CNN chaotic system based on a flux-controlled memristor (MCNN-CS) with electromagnetic induction effects is constructed. Dynamical behaviors are examined by controlling the magnetic flux leakage strength and the intensity of the electromagnetic induction related to the memristor. Based on stability analyses and numerical simulation, forward and reverse period-doubling bifurcations, various coexisting attractors, multiperiods, chaos, several periodic windows, and chaotic crisis are observed. Besides, a number of complicated phenomena, including transient chaos, intermittent chaos, sustained chaos and bistability are also observed, demonstrating that this chaotic system has a wide range of dynamic properties. Finally, we generate pseudo-random number sequences based on this new system and apply them to image encryption. The obtained results show that this chaotic system offers superior randomness and is hence appropriate for image encryption applications.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

“the Fundamental Research Funds for the Central Universities” Southwest University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3