DProvDB: Differentially Private Query Processing with Multi-Analyst Provenance

Author:

Zhang Shufan1ORCID,He Xi1ORCID

Affiliation:

1. University of Waterloo, Waterloo, ON, Canada

Abstract

Recent years have witnessed the adoption of differential privacy (DP) in practical database systems like PINQ, FLEX, and PrivateSQL. Such systems allow data analysts to query sensitive data while providing a rigorous and provable privacy guarantee. However, the existing design of these systems does not distinguish data analysts of different privilege levels or trust levels. This design can have an unfair apportion of the privacy budget among the data analyst if treating them as a single entity, or waste the privacy budget if considering them as non-colluding parties and answering their queries independently. In this paper, we propose DProvDB, a fine-grained privacy provenance framework for the multi-analyst scenario that tracks the privacy loss to each single data analyst. Under this framework, when given a fixed privacy budget, we build algorithms that maximize the number of queries that could be answered accurately and apportion the privacy budget according to the privilege levels of the data analysts.

Funder

NSERC

Publisher

Association for Computing Machinery (ACM)

Reference52 articles.

1. Kareem Amin , Jennifer Gillenwater , Matthew Joseph , Alex Kulesza , and Sergei Vassilvitskii . 2022 . Plume: Differential Privacy at Scale. CoRR , Vol. abs/ 2201 .11603 (2022). showeprint[arXiv]2201.11603 https://arxiv.org/abs/2201.11603 Kareem Amin, Jennifer Gillenwater, Matthew Joseph, Alex Kulesza, and Sergei Vassilvitskii. 2022. Plume: Differential Privacy at Scale. CoRR, Vol. abs/2201.11603 (2022). showeprint[arXiv]2201.11603 https://arxiv.org/abs/2201.11603

2. Borja Balle and Yu-Xiang Wang . 2018 . Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising . In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsm"a ssan , Stockholm, Sweden, July 10--15 , 2018 (Proceedings of Machine Learning Research, Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 403--412. http://proceedings.mlr.press/v80/balle18a.html Borja Balle and Yu-Xiang Wang. 2018. Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsm"a ssan, Stockholm, Sweden, July 10--15, 2018 (Proceedings of Machine Learning Research, Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 403--412. http://proceedings.mlr.press/v80/balle18a.html

3. Proportionally Fair Online Allocation of Public Goods with Predictions

4. CGM

5. Skellam mixture mechanism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cohere: Managing Differential Privacy in Large Scale Systems;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

2. Secure Normal Form: Mediation Among Cross Cryptographic Leakages in Encrypted Databases;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3