CGM

Author:

Bao Ergute1,Yang Yin2,Xiao Xiaokui1,Ding Bolin3

Affiliation:

1. National University of Singapore

2. Hamad Bin Khalifa University

3. Alibaba Group

Abstract

Local differential privacy (LDP) is a well-established privacy protection scheme for collecting sensitive data, which has been integrated into major platforms such as iOS, Chrome, and Windows. The main idea is that each individual randomly perturbs her data on her local device, and only uploads the noisy version to an untrusted data aggregator. This paper focuses on the collection of streaming data consisting of regular updates, e.g. , daily app usage. Such streams, when aggregated over a large population, often exhibit strong autocorrelations , e.g. , the average usage of an app usually does not change dramatically from one day to the next. To our knowledge, this property has been largely neglected in existing LDP mechanisms. Consequently, data collected with current LDP methods often exhibit unrealistically violent fluctuations due to the added noise, drowning the overall trend, as shown in our experiments. This paper proposes a novel correlated Gaussian mechanism ( CGM ) for enforcing (ϵ, δ)-LDP on streaming data collection, which reduces noise by exploiting public-known autocorrelation patterns of the aggregated data. This is done through non-trivial modifications to the core of the underlying Gaussian Mechanism; in particular, CGM injects temporally correlated noise, computed through an optimization program that takes into account the given autocorrelation pattern, data value range, and utility metric. CGM comes with formal proof of correctness, and consumes negligible computational resources. Extensive experiments using real datasets from different application domains demonstrate that CGM achieves consistent and significant utility gains compared to the baseline method of repeatedly running the underlying one-shot LDP mechanism.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DPI: Ensuring Strict Differential Privacy for Infinite Data Streaming;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

2. Real-Time Trajectory Synthesis with Local Differential Privacy;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Scenario-based Adaptations of Differential Privacy: A Technical Survey;ACM Computing Surveys;2024-04-26

4. Privacy Amplification via Shuffling: Unified, Simplified, and Tightened;Proceedings of the VLDB Endowment;2024-04

5. Local differential privacy and its applications: A comprehensive survey;Computer Standards & Interfaces;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3