Proportionally Fair Online Allocation of Public Goods with Predictions

Author:

Banerjee Siddhartha1,Gkatzelis Vasilis2,Hossain Safwan3,Jin Billy1,Micha Evi4,Shah Nisarg4

Affiliation:

1. Cornell University

2. Drexel University

3. Harvard University

4. University of Toronto

Abstract

We design online algorithms for fair allocation of public goods to a set of N agents over a sequence of T rounds and focus on improving their performance using predictions. In the basic model, a public good arrives in each round, and every agent reveals their value for it upon arrival. The algorithm must irrevocably decide the investment in this good without exceeding a total budget of B across all rounds. The algorithm can utilize (potentially noisy) predictions of each agent’s total value for all remaining goods. The algorithm's performance is measured using a proportional fairness objective, which informally demands that every group of agents be rewarded proportional to its size and the cohesiveness of its preferences. We show that no algorithm can achieve better than Θ(T/B) proportional fairness without predictions. With reasonably accurate predictions, the situation improves significantly, and Θ(log(T/B)) proportional fairness is achieved. We also extend our results to a general setting wherein a batch of L public goods arrive in each round and O(log(min(N,L)T/B)) proportional fairness is achieved. Our exact bounds are parameterized as a function of the prediction error, with performance degrading gracefully with increasing errors.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Nash Welfare Maximization Without Predictions;Web and Internet Economics;2023-12-31

2. DProvDB: Differentially Private Query Processing with Multi-Analyst Provenance;Proceedings of the ACM on Management of Data;2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3