Affiliation:
1. University of Cagliari, Department of Mathematics and Computer Science, Cagliari, Italy
Abstract
Eye tracking is one of the most exploited techniques in literature for finding usability problems in web-based user interfaces (UIs). However, it is usually employed in a laboratory setting, considering that an eye-tracker is not commonly used in web browsing. In contrast, web application providers usually exploit remote techniques for large-scale user studies (e.g. A/B testing), tracking low-level interactions such as mouse clicks and movements. In this article, we discuss a method for predicting whether the user is looking at the content pointed by the cursor, exploiting the mouse movement data and a segmentation of the contents in a web page. We propose an automatic method for segmenting content groups inside a web page that, applying both image and code analysis techniques, identifies the user-perceived group of contents with a mean pixel-based error around the 20%. In addition, we show through a user study that such segmentation information enhances the precision and the accuracy in predicting the correlation between between the user’s gaze and the mouse position at the content level, without relaying on user-specific features.
Funder
P.O.R. Sardegna F.S.E., European Social Fund
Sardinia Regional Government
Publisher
Association for Computing Machinery (ACM)
Subject
Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献