An empirical pipeline to derive gaze prediction heuristics for 3D action games

Author:

Bernhard Matthias1,Stavrakis Efstathios2,Wimmer Michael1

Affiliation:

1. Technical University of Vienna

2. INRIA/REVES

Abstract

Gaze analysis and prediction in interactive virtual environments, such as games, is a challenging topic since the 3D perspective and variations of the viewpoint as well as the current task introduce many variables that affect the distribution of gaze. In this article, we present a novel pipeline to study eye-tracking data acquired from interactive 3D applications. The result of the pipeline is an importance map which scores the amount of gaze spent on each object. This importance map is then used as a heuristic to predict a user's visual attention according to the object properties present at runtime. The novelty of this approach is that the analysis is performed in object space and the importance map is defined in the feature space of high-level properties. High-level properties are used to encode task relevance and other attributes, such as eccentricity, which may have an impact on gaze behavior. The pipeline has been tested with an exemplary study on a first-person shooter game. In particular, a protocol is presented describing the data acquisition procedure, the learning of different importance maps from the data, and finally an evaluation of the performance of the derived gaze predictors. A metric measuring the degree of correlation between attention predicted by the importance map and the actual gaze yielded clearly positive results. The correlation becomes particularly strong when the player is attentive to an in-game task.

Funder

Austrian Science Fund

Sixth Framework Programme

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaze-directed and saliency-guided approaches of stereo camera control in interactive virtual reality;Computers & Graphics;2024-02

2. Diversity as Immigration Governmentality: Insights from France;Social Sciences;2021-06-22

3. To See or Not to See;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2021-03-19

4. “White Diversity”: Paradoxes of Deracializing Antidiscrimination;Social Sciences;2020-04-13

5. Visual Attention for Rendered 3D Shapes;Computer Graphics Forum;2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3