Translating Morphologically Rich Indian Languages under Zero-Resource Conditions

Author:

Tanwar Ashwani1,Majumder Prasenjit1

Affiliation:

1. Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, Gujarat, India

Abstract

This work presents an in-depth analysis of machine translations of morphologically-rich Indo-Aryan and Dravidian languages under zero-resource conditions. It focuses on Zero-Shot Systems for these languages and leverages transfer-learning by exploiting target-side monolingual corpora and parallel translations from other languages. These systems are compared with direct translations using the BLEU and TER metrics. Further, Zero-Shot Systems are used as pre-trained models for fine-tuning with real human-generated data taken in different proportions that range from 100 sentences to the entire training set. Performances of the Indo-Aryan and Dravidian languages are compared with a focus on their morphological complexity. The systems with a Dravidian source language performed much better and reached very near to the level of direct translations. This is observed likely due to morphological richness and complexity in the language, which in turn provided more room for transfer-learning in this case. A comparative analysis based on language families has been done. These systems were fine-tuned further, which in turn outperformed direct translations with just 500 parallel sentences for a Dravidian source language. However, systems with an Indo-Aryan source language showed similar performance after getting fine-tuned with 10,000 sentences.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A zero-resourced indigenous language phones occurrence and durations analysis for an automatic speech recognition system;International Journal of Information Technology;2023-09-08

2. Machine Translation on Dravidian Languages;International Journal of Recent Technology and Engineering (IJRTE);2023-05-30

3. Evolution of Machine Translation for Indian Regional Languages using Artificial Intelligence;2023 International Conference on Disruptive Technologies (ICDT);2023-05-11

4. Filtering and Extended Vocabulary based Translation for Low-resource Language Pair of Sanskrit-Hindi;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-04-12

5. Multi-task learning in under-resourced Dravidian languages;Journal of Data, Information and Management;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3