TTC

Author:

Springer Paul1,Hammond Jeff R.2ORCID,Bientinesi Paolo1

Affiliation:

1. AICES, RWTH Aachen, Aachen, Germany

2. Intel Corporation

Abstract

We present Tensor Transpose Compiler (TTC), an open-source parallel compiler for multidimensional tensor transpositions. To generate high-performance C++ code, TTC explores a number of optimizations, including software prefetching, blocking, loop-reordering, and explicit vectorization. To evaluate the performance of multidimensional transpositions across a range of possible use-cases, we also release a benchmark covering arbitrary transpositions of up to six dimensions. Performance results show that the routines generated by TTC achieve close to peak memory bandwidth on both the Intel Haswell and the AMD Steamroller architectures and yield significant performance gains over modern compilers. By implementing a set of pruning heuristics, TTC allows users to limit the number of potential solutions; this option is especially useful when dealing with high-dimensional tensors, as the search space might become prohibitively large. Experiments indicate that when only 100 potential solutions are considered, the resulting performance is about 99% of that achieved with exhaustive search.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference44 articles.

1. Martın Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin etal 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from https://www.tensorflow.org Martın Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin et al. 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from https://www.tensorflow.org

2. Coupled-cluster theory in quantum chemistry

3. Synthesis of High-Performance Parallel Programs for a Class of ab Initio Quantum Chemistry Models

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Algorithm 1026: Concurrent Alternating Least Squares for Multiple Simultaneous Canonical Polyadic Decompositions;ACM Transactions on Mathematical Software;2022-09-10

2. An Efficient Vectorization Scheme for Stencil Computation;2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2022-05

3. High-Performance Tensor Learning Primitives Using GPU Tensor Cores;IEEE Transactions on Computers;2022

4. NDS: N-Dimensional Storage;MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture;2021-10-17

5. Yet Another Tensor Toolbox for Discontinuous Galerkin Methods and Other Applications;ACM Transactions on Mathematical Software;2020-11-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3