Yet Another Tensor Toolbox for Discontinuous Galerkin Methods and Other Applications

Author:

Uphoff Carsten1,Bader Michael1

Affiliation:

1. Technical University of Munich, Garching, Germany

Abstract

The numerical solution of partial differential equations is at the heart of many grand challenges in supercomputing. Solvers based on high-order discontinuous Galerkin (DG) discretisation have been shown to scale on large supercomputers with excellent performance and efficiency if the implementation exploits all levels of parallelism and is tailored to the specific architecture. However, every year new supercomputers emerge and the list of hardware-specific considerations grows simultaneously with the list of desired features in a DG code. Thus, we believe that a sustainable DG code needs an abstraction layer to implement the numerical scheme in a suitable language. We explore the possibility to abstract the numerical scheme as small tensor operations, describe them in a domain-specific language (DSL) resembling the Einstein notation, and to map them to small General Matrix-Matrix Multiplication routines. The compiler for our DSL implements classic optimisations that are used for large tensor contractions, and we present novel optimisation techniques such as equivalent sparsity patterns and optimal index permutations for temporary tensors. Our application examples, which include the earthquake simulation software SeisSol, show that the generated kernels achieve over 50% peak performance of a recent 48-core Skylake system while the DSL considerably simplifies the implementation.

Funder

Volkswagen Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference60 articles.

1. Einstein summation for multidimensional arrays

2. Unified form language

3. Quadrature-Free Implementation of Discontinuous Galerkin Method for Hyperbolic Equations

4. Synthesis of High-Performance Parallel Programs for a Class of ab Initio Quantum Chemistry Models

5. Nathan W. Brei. 2018. Generating Small Sparse Matrix Multiplication Kernels for Knights Landing. Master’s thesis. Technical University of Munich Garching Germany. Nathan W. Brei. 2018. Generating Small Sparse Matrix Multiplication Kernels for Knights Landing. Master’s thesis. Technical University of Munich Garching Germany.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3