Affiliation:
1. Seoul National University, Seoul, Korea
2. Carnegie Mellon University, Pittsburgh, PA
Abstract
Traditionally, design-space exploration for systems-on-chip (SoCs) has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip and their performance continue to increase, a shift from computation-based to communication-based design becomes mandatory. As a result, the communication architecture plays a major role in the area, performance, and energy consumption of the overall system. This article presents a comprehensive evaluation of three on-chip communication architectures targeting multimedia applications. Specifically, we compare and contrast the network-on-chip (NoC) with point-to-point (P2P) and bus-based communication architectures in terms of area, performance, and energy consumption. As the main contribution, we present complete P2P, bus-, and NoC-based implementations of a real multimedia application (i. e. the MPEG-2 encoder), and provide direct measurements using an FPGA prototype and actual video clips, rather than simulation and synthetic workloads. We also support the experimental findings through a theoretical analysis. Both experimental and analysis results show that the NoC architecture scales very well in terms of area, performance, energy, and design effort, while the P2P and bus-based architectures scale poorly on all accounts except for performance and area, respectively.
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications
Cited by
133 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献