BOAT—optimistic decision tree construction

Author:

Gehrke Johannes1,Ganti Venkatesh1,Ramakrishnan Raghu1,Loh Wei-Yin1

Affiliation:

1. Department of Computer Sciences and Department of Statistics, University of Wisconsin-Madison

Abstract

Classification is an important data mining problem. Given a training database of records, each tagged with a class label, the goal of classification is to build a concise model that can be used to predict the class label of future, unlabeled records. A very popular class of classifiers are decision trees. All current algorithms to construct decision trees, including all main-memory algorithms, make one scan over the training database per level of the tree. We introduce a new algorithm (BOAT) for decision tree construction that improves upon earlier algorithms in both performance and functionality. BOAT constructs several levels of the tree in only two scans over the training database, resulting in an average performance gain of 300% over previous work. The key to this performance improvement is a novel optimistic approach to tree construction in which we construct an initial tree using a small subset of the data and refine it to arrive at the final tree. We guarantee that any difference with respect to the “real” tree (i.e., the tree that would be constructed by examining all the data in a traditional way) is detected and corrected. The correction step occasionally requires us to make additional scans over subsets of the data; typically, this situation rarely arises, and can be addressed with little added cost. Beyond offering faster tree construction, BOAT is the first scalable algorithm with the ability to incrementally update the tree with respect to both insertions and deletions over the dataset. This property is valuable in dynamic environments such as data warehouses, in which the training dataset changes over time. The BOAT update operation is much cheaper than completely rebuilding the tree, and the resulting tree is guaranteed to be identical to the tree that would be produced by a complete re-build.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3