Constraint Enforcement on Decision Trees: A Survey

Author:

Nanfack Géraldin1ORCID,Temple Paul1ORCID,Frénay Benoît1ORCID

Affiliation:

1. University of Namur, Rue Grandgagnage, Namur, Belgium

Abstract

Decision trees have the particularity of being machine learning models that are visually easy to interpret and understand. Therefore, they are primarily suited for sensitive domains like medical diagnosis, where decisions need to be explainable. However, if used on complex problems, then decision trees can become large, making them hard to grasp. In addition to this aspect, when learning decision trees, it may be necessary to consider a broader class of constraints, such as the fact that two variables should not be used in a single branch of the tree. This motivates the need to enforce constraints in learning algorithms of decision trees. We propose a survey of works that attempted to solve the problem of learning decision trees under constraints. Our contributions are fourfold. First, to the best of our knowledge, this is the first survey that deals with constraints on decision trees. Second, we define a flexible taxonomy of constraints applied to decision trees and methods for their treatment in the literature. Third, we benchmark state-of-the art depth-constrained decision tree learners with respect to predictive accuracy and computational time. Fourth, we discuss potential future research directions that would be of interest for researchers who wish to conduct research in this field.

Funder

EOS-VeriLearn

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference154 articles.

1. Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making

2. Strong optimal classification trees;Aghaei Sina;arXiv preprint arXiv:2103.15965,2021

3. Learning Optimal Decision Trees Using Caching Branch-and-Bound Search

4. PyDL8.5: a Library for Learning Optimal Decision Trees

5. Learning certifiably optimal rule lists for categorical data;Angelino Elaine;J. Mach. Learn. Res.,2018

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3