Classification Algorithms and Dataflow Implementation

Author:

Abstract

The implementation of data mining methods on dataflow computers enables an easy use of parallelism, but it also faces numerous obstacles. The problem underlying the impossibility of using currently developed algorithms in their existing form is their adaptation to von Neumann computer model, which assumes sequential calculations and intensive use of memory. This is one of the reasons why there are no fully developed classification algorithms on dataflow computer models in the open literature at the moment when this text is written. This chapter summarizes the characteristics that can be used as directions in the future construction of algorithms and outlines drafts for two implementations of the K-nearest neighbor algorithm.

Publisher

IGI Global

Reference59 articles.

1. TensorFlow: A system for large-scale machine learning.;M.Abadi;12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),2016

2. AggarwalC. C. (Ed.). (2007). Data Streams - Models and Algorithms. Springer-Verlag.

3. Data Classification

4. Models for machine learning and data mining in functional programming

5. Data flow computing and parallel reduction machine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3