Content-Aware Bit Shuffling for Maximizing PCM Endurance

Author:

Han Miseon1,Han Youngsun2,Kim Seon Wook1,Lee Hokyoon3,Park Il3

Affiliation:

1. Korea University, Seoul, Korea

2. Kyungil University, Yangsan, Korea

3. SK Hynix, Icheon, Korea

Abstract

Recently, phase change memory (PCM) has been emerging as a strong replacement for DRAM owing to its many advantages such as nonvolatility, high capacity, low leakage power, and so on. However, PCM is still restricted for use as main memory because of its limited write endurance. There have been many methods introduced to resolve the problem by either reducing or spreading out bit flips. Although many previous studies have significantly contributed to reducing bit flips, they still have the drawback that lower bits are flipped more often than higher bits because the lower bits frequently change their bit values. Also, interblock wear-leveling schemes are commonly employed for spreading out bit flips by shifting input data, but they increase the number of bit flips per write. In this article, we propose a noble content-aware bit shuffling (CABS) technique that minimizes bit flips and evenly distributes them to maximize the lifetime of PCM at the bit level. We also introduce two additional optimizations, namely, addition of an inversion bit and use of an XOR key, to further reduce bit flips. Moreover, CABS is capable of recovering from stuck-at faults by restricting the change in values of stuck-at cells. Experimental results showed that CABS outperformed the existing state-of-the-art methods in the aspect of PCM lifetime extension with minimal overhead. CABS achieved up to 48.5% enhanced lifetime compared to the data comparison write (DCW) method only with a few metadata bits. Moreover, CABS obtained approximately 9.7% of improved write throughput than DCW because it significantly reduced bit flips and evenly distributed them. Also, CABS reduced about 5.4% of write dynamic energy compared to DCW. Finally, we have also confirmed that CABS is fully applicable to BCH codes as it was able to reduce the maximum number of bit flips in metadata cells by 32.1%.

Funder

SK hynix Inc

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Efficiency Enhancement of SCM-Based Systems: Write-Friendly Coding;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-05

2. Challenges in Design, Data Placement, Migration and Power-Performance Trade-offs in DRAM-NVM-based Hybrid Memory Systems;IETE Technical Review;2022-10-13

3. Gray counters for non-volatile memories;Memories - Materials, Devices, Circuits and Systems;2022-10

4. LEnS: Lifetime Enhancement Coding Scheme for Non-volatile Memory Processors;2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS);2021-08-09

5. BiSuT: A NoC-Based Bit-Shuffling Technique for Multiple Permanent Faults Mitigation;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3