Improving processor efficiency by statically pipelining instructions

Author:

Finlayson Ian1,Davis Brandon2,Gavin Peter2,Uh Gang-Ryung3,Whalley David2,Själander Magnus2,Tyson Gary2

Affiliation:

1. University of Mary Washington, Fredericksburg, VA, USA

2. Florida State University, Tallahassee, FL, USA

3. Boise State University, Boise, FL, USA

Abstract

A new generation of applications requires reduced power consumption without sacrificing performance. Instruction pipelining is commonly used to meet application performance requirements, but some implementation aspects of pipelining are inefficient with respect to energy usage. We propose static pipelining as a new instruction set architecture to enable more efficient instruction flow through the pipeline, which is accomplished by exposing the pipeline structure to the compiler. While this approach simplifies hardware pipeline requirements, significant modifications to the compiler are required. This paper describes the code generation and compiler optimizations we implemented to exploit the features of this architecture. We show that we can achieve performance and code size improvements despite a very low-level instruction representation. We also demonstrate that static pipelining of instructions reduces energy usage by simplifying hardware, avoiding many unnecessary operations, and allowing the compiler to perform optimizations that are not possible on traditional architectures.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3