Rendering of Subjective Speckle Formed by Rough Statistical Surfaces

Author:

Steinberg Shlomi1,Yan Ling-Qi1

Affiliation:

1. University of California, Santa Barbara, California

Abstract

Tremendous effort has been extended by the computer graphics community to advance the level of realism of material appearance reproduction by incorporating increasingly more advanced techniques. We are now able to re-enact the complicated interplay between light and microscopic surface features—scratches, bumps and other imperfections—in a visually convincing fashion. However, diffractive patterns arise even when no explicitly defined features are present: Any random surface will act as a diffracting aperture and its statistics heavily influence the statistics of the diffracted wave fields. Nonetheless, the problem of rendering diffraction effects induced by surfaces that are defined purely statistically remains wholly unexplored. We present a thorough derivation, from core optical principles, of the intensity of the scattered fields that arise when a natural, partially coherent light source illuminates a random surface. We follow with a probability theory analysis of the statistics of those fields and present our rendering algorithm. All of our derivations are formally proven and verified numerically as well. Our method is the first to render diffraction effects produced by a surface described statistically only, and bridges the theoretical gap between contemporary surface modelling and rendering.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference67 articles.

1. E. Akkermans . 2007. Mesoscopic Physics of Electrons and Photons . Cambridge University Press , Cambridge . E. Akkermans. 2007. Mesoscopic Physics of Electrons and Photons. Cambridge University Press, Cambridge.

2. A Monte Carlo framework for rendering speckle statistics in scattering media

3. Rendering near-field speckle statistics in scattering media

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3