Author:
Crispim Mariana J. B.,Pereira Cícera C. S.,Oliveira Nathália T. C.,Chevrollier Martine,de Oliveira Rafael A.,Martins Weliton S.,Reyna Albert S.
Abstract
AbstractLight scattering, whether caused by desired or spurious elements, is considered one of the main phenomena that present great challenges for the nonlinear (NL) optical characterization of turbid media. The most relevant disturbing factor is the random deformation suffered by the spatial intensity distribution of the laser beam due to multiple scattering. In this work, we report the intensity correlation scan (IC-scan) technique as a new tool to characterize the NL optical response of scattering media, by taking advantage of light scattering to generate speckle patterns sensitive to wavefront changes induced by the self-focusing and self-defocusing effects. Peak-to-valley transmittance curves, with a higher signal-to-noise ratio, are obtained by analyzing the spatial intensity correlation functions of the different speckle patterns, even in very turbid media where conventional NL spectroscopy techniques fail. To demonstrate the potential of the IC-scan technique, the NL characterization of colloids that contain a high concentration of silica nanospheres as scatterers, as well as gold nanorods, which act as NL particles and light scatterers, was performed. The results show that the IC-scan technique is more accurate, precise and robust to measure NL refractive indices in turbid media, overcoming limitations imposed by well-established Z-scan and D4σ techniques.
Funder
Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献