Parallel R-trees

Author:

Kamel Ibrahim1,Faloutsos Christos1

Affiliation:

1. University of Maryland, College Park, MD

Abstract

We consider the problem of exploiting parallelism to accelerate the performance of spacial access methods and specifically, R-trees [11]. Our goal is to design a server for spatial data, so that to maximize the throughput of range queries. This can be achieved by (a) maximizing parallelism for large range queries, and (b) by engaging as few disks as possible on point queries [22]. We propose a simple hardware architecture consisting of one processor with several disks attached to it. On this architecture, we propose to distribute the nodes of a traditonal R-tree, with cross-disk pointers (“Multiplexed” R-tree). The R-tree code is identical to the one for a single-disk R-tree, with the only addition that we have to decide which disk a newly created R-tree node should be stored in. We propose and examine several criteria to choose a disk for a new node. The most successful one, termed “proximity index” or PI, estimates the similarity of the new node with the other R-tree nodes already on a disk, and chooses the disk with the lowest similarity. Experimental results show that our scheme consistently outperforms all the other heuristics for node-to-disk assignments, achieving up to 55% gains over the Round Robin one. Experiments also indicate that the multiplexed R-tree with PI heuristic gives better response time than the disk-stripping (=“Super-node”) approach, and imposes lighter load on the I/O sub-system. The speed up of our method is close to linear speed up, increasing with the size of the queries.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Indexing and Compression Method with AI-Enhanced Restoration for Scientific Data Service;Applied Sciences;2024-06-25

2. METAL: Caching Multi-level Indexes in Domain-Specific Architectures;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2024-04-27

3. SbMBR Tree—A Spatiotemporal Data Indexing and Compression Algorithm for Data Analysis and Mining;Applied Sciences;2023-09-22

4. Quantum Computing Significance on Multidimensional Data;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2023-04-21

5. Range Search over Encrypted Multi-Attribute Data;Proceedings of the VLDB Endowment;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3