SbMBR Tree—A Spatiotemporal Data Indexing and Compression Algorithm for Data Analysis and Mining

Author:

Guan Runda1,Wang Ziyu1,Pan Xiaokang1,Zhu Rongjie2,Song Biao3,Zhang Xinchang4

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Teacher Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. Department of Science and Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

In the field of data analysis and mining, adopting efficient data indexing and compression techniques to spatiotemporal data can significantly reduce computational and storage overhead for the abilities to control the volume of data and exploit the spatiotemporal characteristics. However, traditional lossy compression techniques are hardly suitable due to their inherently random nature. They often impose unpredictable damage to scientific data, which affects the results of data mining and analysis tasks that require certain precision. In this paper, we propose a similarity-based minimum bounding rectangle (SbMBR) tree, a tree-based indexing and compression method, to address the aforementioned problem. Our method can hierarchically select appropriate minimum bounding rectangles according to the given maximum acceptable errors and use the average value contained in each selected MBR to replace the original data to achieve data compression with multi-layer loss control. This paper also provides the corresponding tree construction algorithm and range query processing algorithm for the indexing structure mentioned above. To evaluate the data quality preservation in cross-domain data analysis and mining scenarios, we use mutual information as the estimation metric. Experimental results emphasize the superiority of our method over some of the typical indexing and compression algorithms.

Funder

National Key Research and Development Program of China

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3