Affiliation:
1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China
2. Hefei University of Technology, Hefei, China
Abstract
In educational data mining, knowledge tracing (KT) aims to model learning performance based on student knowledge mastery. Deep-learning-based KT models perform remarkably better than traditional KT and have attracted considerable attention. However, most of them lack interpretability, making it challenging to explain why the model performed well in the prediction. In this paper, we propose an interpretable deep KT model, referred to as fuzzy deep knowledge tracing (FDKT) via fuzzy reasoning. Specifically, we formalize continuous scores into several fuzzy scores using the fuzzification module. Then, we input the fuzzy scores into the fuzzy reasoning module (FRM). FRM is designed to deduce the current cognitive ability, based on which the future performance was predicted. FDKT greatly enhanced the intrinsic interpretability of deep-learning-based KT through the interpretation of the deduction of student cognition. Furthermore, it broadened the application of KT to continuous scores. Improved performance with regard to both the advantages of FDKT was demonstrated through comparisons with the state-of-the-art models.
Funder
National Science and Technology Major Project
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Association for Computing Machinery (ACM)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献