Modular Product Programs

Author:

Eilers Marco1ORCID,Müller Peter1ORCID,Hitz Samuel1

Affiliation:

1. ETH Zurich, Zurich, Switzerland

Abstract

Many interesting program properties like determinism or information flow security are hyperproperties, that is, they relate multiple executions of the same program. Hyperproperties can be verified using relational logics, but these logics require dedicated tool support and are difficult to automate. Alternatively, constructions such as self-composition represent multiple executions of a program by one product program, thereby reducing hyperproperties of the original program to trace properties of the product. However, existing constructions do not fully support procedure specifications, for instance, to derive the determinism of a caller from the determinism of a callee, making verification non-modular. We present modular product programs, a novel kind of product program that permits hyperproperties in procedure specifications and, thus, can reason about calls modularly. We provide a general formalization of our product construction and prove it sound and complete. We demonstrate its expressiveness by applying it to information flow security with advanced features such as declassification and termination-sensitivity. Modular product programs can be verified using off-the-shelf verifiers; we have implemented our approach for both secure information flow and general hyperproperties using the Viper verification infrastructure. Our evaluation demonstrates that modular product programs can be used to prove hyperproperties for challenging examples in reasonable time.

Funder

Zurich Information Security and Privacy Center

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Axiomatising an information flow logic based on partial equivalence relations;International Journal on Software Tools for Technology Transfer;2024-06-25

2. Towards Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate Verification Language;Proceedings of the ACM on Programming Languages;2024-06-20

3. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties;Proceedings of the ACM on Programming Languages;2024-06-20

4. Verification Algorithms for Automated Separation Logic Verifiers;Lecture Notes in Computer Science;2024

5. Automated Software Verification of Hyperliveness;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3