Towards Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate Verification Language

Author:

Parthasarathy Gaurav1ORCID,Dardinier Thibault1ORCID,Bonneau Benjamin2ORCID,Müller Peter1ORCID,Summers Alexander J.3ORCID

Affiliation:

1. ETH Zurich, Zurich, Switzerland

2. Université Grenoble Alpes - CNRS - Grenoble INP - VERIMAG, Grenoble, France

3. University of British Columbia, Vancouver, Canada

Abstract

Automated program verifiers are typically implemented using an intermediate verification language (IVL), such as Boogie or Why3. A verifier front-end translates the input program and specification into an IVL program, while the back-end generates proof obligations for the IVL program and employs an SMT solver to discharge them. Soundness of such verifiers therefore requires that the front-end translation faithfully captures the semantics of the input program and specification in the IVL program, and that the back-end reports success only if the IVL program is actually correct. For a verification tool to be trustworthy, these soundness conditions must be satisfied by its actual implementation , not just the program logic it uses. In this paper, we present a novel validation methodology that, given a formal semantics for the input language and IVL, provides formal soundness guarantees for front-end implementations. For each run of the verifier, we automatically generate a proof in Isabelle showing that the correctness of the produced IVL program implies the correctness of the input program. This proof can be checked independently from the verifier, in Isabelle, and can be combined with existing work on validating back-ends to obtain an end-to-end soundness result. Our methodology based on forward simulation employs several modularisation strategies to handle the large semantic gap between the input language and the IVL, as well as the intricacies of practical, optimised translations. We present our methodology for the widely-used Viper and Boogie languages. Our evaluation shows that it is effective in validating the translations performed by the existing Viper implementation.

Funder

Swiss National Science Foundation

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3