Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties

Author:

Dardinier Thibault1ORCID,Müller Peter1ORCID

Affiliation:

1. ETH Zurich, Zürich, Switzerland

Abstract

Hoare logics are proof systems that allow one to formally establish properties of computer programs. Traditional Hoare logics prove properties of individual program executions (such as functional correctness). Hoare logic has been generalized to prove also properties of multiple executions of a program (so-called hyperproperties, such as determinism or non-interference). These program logics prove the absence of (bad combinations of) executions. On the other hand, program logics similar to Hoare logic have been proposed to disprove program properties (e.g., Incorrectness Logic), by proving the existence of (bad combinations of) executions. All of these logics have in common that they specify program properties using assertions over a fixed number of states, for instance, a single pre- and post-state for functional properties or pairs of pre- and post-states for non-interference. In this paper, we present Hyper Hoare Logic, a generalization of Hoare logic that lifts assertions to properties of arbitrary sets of states. The resulting logic is simple yet expressive: its judgments can express arbitrary program hyperproperties, a particular class of hyperproperties over the set of terminating executions of a program (including properties of individual program executions). By allowing assertions to reason about sets of states, Hyper Hoare Logic can reason about both the absence and the existence of (combinations of) executions, and, thereby, supports both proving and disproving program (hyper-)properties within the same logic, including (hyper-)properties that no existing Hoare logic can express. We prove that Hyper Hoare Logic is sound and complete, and demonstrate that it captures important proof principles naturally. All our technical results have been proved in Isabelle/HOL.

Funder

Swiss National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Reference68 articles.

1. Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Pierre-Yves Strub. 2017. A relational logic for higher-order programs. Proceedings of the ACM on Programming Languages, 1, ICFP (2017), 1–29.

2. A logic for information flow in object-oriented programs

3. An Algebra of Alignment for Relational Verification

4. Hypercollecting semantics and its application to static analysis of information flow

5. Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational verification using product programs. In International Symposium on Formal Methods. 200–214.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanised Hypersafety Proofs about Structured Data;Proceedings of the ACM on Programming Languages;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3