Mining At Most Top-K% Spatiotemporal Co-occurrence Patterns in Datasets with Extended Spatial Representations

Author:

Pillai Karthik Ganesan1,Angryk Rafal A.2,Banda Juan M.3,Kempton Dustin2,Aydin Berkay2,Martens Petrus C.4

Affiliation:

1. Montana State University, Bozeman, MT

2. Georgia State University, Atlanta, GA

3. Stanford University, Stanford, California

4. Georgia State University

Abstract

Spatiotemporal co-occurrence patterns (STCOPs) in datasets with extended spatial representations are two or more different event types, represented as polygons evolving in time, whose instances often occur together in both space and time. Finding STCOPs is an important problem in domains such as weather monitoring, wildlife migration, and solar physics. Nevertheless, in real life, it is difficult to find a suitable prevalence threshold without prior domain-specific knowledge. In this article, we focus our work on the problem of mining at most top-K% of STCOPs from continuously evolving spatiotemporal events that have polygon-like representations, without using a user-specified prevalence threshold.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation Metrics of Spatial and Spatiotemporal Data Mining Techniques;Emerging Technologies in Data Mining and Information Security;2021

2. A Survey on Spatiotemporal Co-occurrence Pattern Mining Techniques;Algorithms for Intelligent Systems;2021

3. Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories;SpringerBriefs in Computer Science;2018

4. Spatiotemporal Event Sequence (STES) Mining;Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories;2018

5. Spatiotemporal Co-occurrence Pattern (STCOP) Mining;Spatiotemporal Frequent Pattern Mining from Evolving Region Trajectories;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3