A Survey on Spatiotemporal Co-occurrence Pattern Mining Techniques
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-33-4604-8_18
Reference47 articles.
1. Kawale J, Steinbach M, Kumar V (2011) Discovering dynamic dipoles in climate data. In: Proceedings of the 11th SIAM international conference on data mining, SDM 2011, January 2014, pp 107–118
2. Liu X, Chang C, Duyn JH (2013) Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns. Front Syst Neurosci 7(Dec):1–11
3. Tran-The H, Zettsu K (2017) Finding spatiotemporal co-occurrence patterns of heterogeneous events for prediction. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on the use of GIS in emergency management, EM-GIS 2017
4. Kratz L, Nishino K (2009) Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: IEEE computer society conference on computer vision and pattern recognition workshops, CVPR workshops 2009, vol 2009. IEEE, pp 1446–1453
5. Xia D, Lu X, Li H, Wang W, Li Y, Zhang Z (2018) A MapReduce-based parallel frequent pattern growth algorithm for spatiotemporal association analysis of mobile trajectory big data. Complexity 2018
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Clustering-Assisted Regional Spatio-Temporal Sequence Pattern Mining in Crime Database;International Journal of Applied Geospatial Research;2022-05-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3